Javascript Menu by Deluxe-Menu.com
MindPapers is now part of PhilPapers: online research in philosophy, a new service with many more features.
 
 Compiled by David Chalmers (Editor) & David Bourget (Assistant Editor), Australian National University. Submit an entry.
 
   
click here for help on how to search

6.5a.6. Pancomputationalism (Pancomputationalism on PhilPapers)

Bishop, Michael A. (2003). Dancing with pixies: Strong artificial intelligence and panpsychism. In John M. Preston & Michael A. Bishop (eds.), Views Into the Chinese Room: New Essays on Searle and Artificial Intelligence. Oxford University Press.   (Google)
Dodig-Crnkovic, Gordana (2008). Empirical Modeling and Information Semantics. Mind & Society 7 (2):157.   (Google)
Abstract: This paper investigates the relationship between reality and model, information and truth. It will argue that meaningful data need not be true in order to constitute information. Information to which truth-value cannot be ascribed, partially true information or even false information can lead to an interesting outcome such as technological innovation or scientific breakthrough. In the research process, during the transition between two theoretical frameworks, there is a dynamic mixture of old and new concepts in which truth is not well defined. Instead of veridicity, correctness of a model and its appropriateness within a context are commonly required. Despite empirical models being in general only truthlike, they are nevertheless capable of producing results from which conclusions can be drawn and adequate decisions made.
Dodig-Crnkovic, Gordana (2008). Knowledge Generation as Natural Computation. Journal of Systemics, Cybernetics and Informatics 6 (2).   (Google)
Abstract: Knowledge generation can be naturalized by adopting computational model of cognition and evolutionary approach. In this framework knowledge is seen as a result of the structuring of input data (data → information → knowledge) by an interactive computational process going on in the agent during the adaptive interplay with the environment, which clearly presents developmental advantage by increasing agent’s ability to cope with the situation dynamics. This paper addresses the mechanism of knowledge generation, a process that may be modeled as natural computation in order to be better understood and improved
Dodig-Crnkovic, Gordana (online). Semantics of Information as Interactive Computation. Proceedings of the Fifth International Workshop on Philosophy and Informatics.   (Google)
Abstract: Computers today are not only the calculation tools - they are directly (inter)acting in the physical world which itself may be conceived of as the universal computer (Zuse, Fredkin, Wolfram, Chaitin, Lloyd). In expanding its domains from abstract logical symbol manipulation to physical embedded and networked devices, computing goes beyond Church-Turing limit (Copeland, Siegelman, Burgin, Schachter). Computational processes are distributed, reactive, interactive, agent-based and concurrent. The main criterion of success of computation is not its termination, but the adequacy of its response, its speed, generality and flexibility; adaptability, and tolerance to noise, error,faults, and damage. Interactive computing is a generalization of Turing computing, and it calls for new conceptualizations (Goldin, Wegner). In the info-computationalist framework, with computation seen as information processing, natural computation appears as the most suitable paradigm of computation and information semantics requires logical pluralism.
Dodig-Crnkovic, Gordana (2003). Shifting the paradigm of philosophy of science: Philosophy of information and a new renaissance. Minds and Machines 13 (4).   (Google)
Abstract:   Computing is changing the traditional field of Philosophy of Science in a very profound way. First as a methodological tool, computing makes possible ``experimental Philosophy'' which is able to provide practical tests for different philosophical ideas. At the same time the ideal object of investigation of the Philosophy of Science is changing. For a long period of time the ideal science was Physics (e.g., Popper, Carnap, Kuhn, and Chalmers). Now the focus is shifting to the field of Computing/Informatics. There are many good reasons for this paradigm shift, one of those being a long standing need of a new meeting between the sciences and humanities, for which the new discipline of Computing/Informatics gives innumerable possibilities. Contrary to Physics, Computing/Informatics is very much human-centered. It brings a potential for a new Renaissance, where Science and Humanities, Arts and Engineering can reach a new synthesis, so very much needed in our intellectually split culture. This paper investigates contemporary trends and the relation between the Philosophy of Science and the Philosophy of Computing and Information, which is equivalent to the present relation between Philosophy of Science and Philosophy of Physics
Grigg, Rowan (ms). A case for lattice schemes in fundamental physics.   (Google)
Abstract: A synthesis of trending topics in pancomputationalism. I introduce the notion that "strange loops" engender the most atomic levels of physical reality, and introduce a mechanism for global non-locality. Writen in a simple and accesssible style, it seeks to draw research in fundamental physics back to realism, and have a bit of fun in the process.
Grigg, Rowan (ms). The Universal Lattice.   (Google)