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Abstract

There has been much interest in the possibility of connectionist models whose
representations can be endowed with compositional structure, and a variety of
such models have been proposed.  These models typically use distributed
representations that arise from the functional composition of constituent parts.
Functional composition and decomposition alone, however, yield only an
implementation of classical symbolic theories.  This paper explores the possibility
of moving beyond implementation by exploiting holistic structure-sensitive
operations on distributed representations.  An experiment is performed using
Pollack’s Recursive Auto-Associative Memory.  RAAM is used to construct
distributed representations of syntactically structured sentences.  A feed-forward
network is then trained to operate directly on these representations, modeling syn-
tactic transformations of the represented sentences.  Successful training and
generalization is obtained, demonstrating that the implicit structure present in
these representations can be used for a kind of structure-sensitive processing
unique to the connectionist domain.  
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1  Introduction

Since the critique by Fodor and Pylyshyn (1988), connectionists have been
investigating possible methods of endowing their representations with some kind of
compositional structure, and with operations that are sensitive to this structure.  To this
end, various models have been devised by Elman (in press), Pollack (1988; in press), and
Smolensky (in press), among others.  Most of these models have utilized implicit structure
in distributed representations, which are constructed and possibly deconstructed via
various functional manipulations.  This stands in clear contrast to the explicit constituent
structure used in “Classical” symbolic models.

 
Van Gelder (1990) has expressed this distinction by noting that the connectionist

implementations of compositional structure have used “functional compositionality,”
rather than the “concatenative compositionality” that has been used in more traditional AI
approaches.  Functional compositionality is achieved by the use of (possibly quite
complex) functions which operate on symbol tokens, and produce a coded representation
of a complex compositional structure.  In turn, there are further functions which take us
back from the compositional representation to the constituent parts.  These models differ
from the symbolic models in that the compositional representation need not contain
explicit physical tokens of the original constituents, but may instead only contain the
original information in a very implicit way.

 
It must be noted, however, that this methodology as it stands is vulnerable to Fodor

and Pylyshyn’s second-favourite reply to connectionists: “But then it’s only an
implementation of the Classical approach!”  If this is all there is to the story, then “functional
compositionality” is no more than a simple variation of Classical compositionality.  The
“composing” functions are simple implementations of Classical composing functions, like
the “cons” operation in Lisp.  The “extracting” functions are implementations of Classical
extraction function, like “car” and “cdr” in Lisp.  Describing the model in terms of these
operations gives a complete operational description of the system’s processing, at a higher
level of abstraction.  (The main difference might be a slightly degraded performance of
the connectionist models, due to imperfect preservation of information over the
operations.) As the Classicist might put it: what the representation looks like is a mere
implementational detail.

 
But more is offered by the connectionist account.  To see this, we should first note

that the only operations that are available on a Classical compositional representation are
those of extraction or further composition.  In particular, to do anything with such a
representation — to exploit the information that is contained therein — one must first go
through the process of extracting the original constituent tokens.  Any program that uses
a Lisp list, for instance, must at some stage extract the elements of the list with an
operation like “car.”  On the connectionist account, this restriction need not apply.
Connectionism offers the opportunity to operate on compositional representations
holistically, without first proceeding through the step of extraction.

 The reason that connectionist models have this ability lies in the fact that
connectionist representations are much richer than symbolic representations.  All there is
to a symbolic representation is its compositional structure — beyond this, it is just
primitive, atomic components.  Connectionist representations may contain compositional
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structure, but the compositional structure does not nearly exhaust the properties of the
representation.  The complex, distributed microstructure of these representations contains
much information that may be exploited for a variety of purposes.

 
When a connectionist representation is operated on holistically, it is this

microstructure that is being exploited.  And these holistic operations represent a whole
new range of possible functions that can be used on connectionist representations.  There
is thus a functional distinction between connectionist and Classical models of
compositionality, and it is in this functional distinction that the promise of connectionist
compositional representation lies.  In no sense can these functions be regarded as
implementations of Classical operations; they open a whole new area of research.

 
This paper describes an experiment in the use of such holistic operations to model

structure-sensitive processes.  These operations take place within the context of a
Recursive Auto-Associative Memory (RAAM), a very interesting connectionist model of
compositional structure devised by Pollack (1988).  So far, RAAM has mostly been used to
implement the symbolic operations of composition and extraction.  This experiment
demonstrates that it is also well-suited for the modeling of structure-sensitive operations in
a manner which is no mere implementation — something that Fodor and Pylyshyn
claimed was impossible.  (The future possibility of such processing is anticipated by
Pollack (in press), under the name of “Associative Inference.”)

 
The particular structure-sensitive operations that are used here are syntactic

transformations on sentences.  Specifically, the passivization of sentences is modeled —
for instance, the transformation from “John loves Michael” to “Michael is loved by John.”
The status of such transformations as real cognitive entities is somewhat questionable
these days, and no strong commitment is being made here to any particular linguistic
paradigm.  Rather, transformations are being used as an example of the kind of complex,
structured operation in natural language with which connectionist approaches are
supposed to have difficulty.  

2  The RAAM architecture
 
The architecture of RAAM is described in detail in Pollack (in press).  RAAM is in

principle capable of developing distributed representation of fixed-valence tree structures
of arbitrary depth.  (In this experiment, all trees will have valence 3.)  This is achieved via
a recursive encoding procedure.

The basic structure of the architecture is shown in Figure 1.  This is a simple 3-layer
feed-forward network, with 3N units in the input and output layers, and N units in the
hidden layer, where N is some positive integer. To encode a given tree, we start with the its
terminal elements.  Each of these is encoded as a pattern over N units.  Starting at the
bottom of the tree, these are fed into the network three at a time (where every three
inputs correspond to three leaves that descend from a single node of the tree).  Assuming
the network is functioning correctly, the hidden layer will be activated with a distributed
representation of the inputs, compressed to one-third of the original size.  This
representation can then be used in turn as input for another run of the network,
combined with two other representations (which may be terminal or non-terminal).  We
proceed in this manner, recursively up the tree, until we have a single compressed
distributed representation of the entire tree. 
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  Figure 1.  The basis of the RAAM Architecture

Of course, the network has to be set up to encode the representations in a useful
way.  This is done by first training the network to auto-associate the desired inputs, using
the familiar backpropagation procedure.  The appropriate sets of three terminal
representations are given as inputs, and the network is trained to reproduce the same
representations in the output layer.  The hidden layer is thus forced to develop a
compressed representation of the original inputs.  At the same time, the hidden layers
from these training cycles are extracted and used in turn as inputs to train the network to
auto-associate on higher-order structures, and so on.  (As the network learns, the patterns
in the hidden layers change, so we get a kind of “moving target” learning.)

 
If this training process is carried through to completion, not only will we have a

reliable encoding process but also a decoding process into the bargain.  To decode a
compressed representation of a given tree, we need only feed it in directly to the hidden
layer of the network, and propagate activation to the output layer.  If the output layer
consists of representations of terminal symbols, we are done; otherwise, we take any non-
terminal representations and repeat the process on these, recursively, until we bottom out
with terminal representations everywhere.  The only difficulty lies in the fact that we need
a decision procedure to decide whether a given representation is a terminal element, or
whether it is a non-terminal representation that needs to be further decoded.  Such
procedures can be devised quite simply, but finding an optimal decision procedure may
require some thought.

 3  The implementation of syntactic structures in RAAM
 
To enable the desired syntactically sensitive operations on sentences, we need a

representation of their syntactic structures.  This is done in a simple manner, representing
sentences as valence-3 trees as shown in Figure 2.  In this small-scale experiment, all
sentences used have one of the two basic structures shown in Figure 2.  Note that dummy
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objects (“NIL”) are used to fill in the spaces where only two of the three leaves descending
from a node are required.

 

 Figure 2.   Examples of sentences to be represented.

Before training the RAAM, a terminal representation for the words has to be chosen.
A simple localist representation is used here.  Terminal representations consist of 13 units
in all.  The first 6 units represent “part of speech”.  The parts of speech used here are,
somewhat arbitrarily: noun, proper noun, verb, adjective, auxiliary verb and preposition.
(As it happens, only “proper noun”, “verb”, “auxiliary verb” and “preposition” are needed
in this experiment.)  Only one of these units is activated in a given word.  The next 5 units
represent the particular word.  Again, only one of these units can be on, so there is a
maximum vocabulary of 5 words for every part of speech, or 30 words in all.  The final 2
units are spare units. These are never used for input representations, but provide valuable
extra space to be used by the distributed representations formed by the RAAM.

 
The representations of all words used in the experiment are shown in Table 1.  The

dummy word (“NIL” in Figure 2) is represented by having all 13 units unactivated.  It
should be noted that no attempt is made to represent verb tense or subject-verb
agreement.  The variation of verb form has been investigated separately by Rumelhart and
McClelland (1986), among others.

                         

Table 1.  Representations of words used in the experiment.

Altogether, there are 125 possible sentences of each of the two forms shown in
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WORD
JOHN
MICHAEL
HELEN
DIANE
CHRIS
LOVE
HIT
BETRAY
KILL
HUG
IS
BY
NIL

REPRESENTATION
0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

JOHN LOVE MICHAEL

MICHAEL

IS BYLOVE JOHNNIL NIL



Figure 2 (as there are five possibilities for each of the three variable parts of the sentenc-
es).    A sample of 40 sentences of the active form was randomly generated.  These sen-
tences, along with the 40 corresponding passivized sentences, were used as a training cor-
pus.  A further (non-overlapping) sample of 40 more sentences of each type was
generated, to be used as a test of generalization abilities.

 3.1  Training the RAAM
  
The initial corpus of 80 sentences, 40 of each type, was used to train the RAAM in the

manner specified in Section 2.  There were 160 cycles of the network per epoch, one for
each of the original sentences and three for each of the passivized sentences
(corresponding to the three internal nodes of the tree).  The initial learning rate was 0.1;
this was lowered to 0.025 by the end of the training procedure.  A momentum rate of 0.9
was used.

 
The network was trained for 6400 epochs, by which time all but 20 output units (out

of 6240 in all) had an error of less than 0.05.  The maximum error on any output unit was
0.12.

3.2  Testing the RAAM
 
To use the decoding ability of the RAAM, we first need an appropriate test for

terminal elements.  In this experiment, a representation was deemed non-terminal if more
than 2 units had an activation greater than 0.15 and less than 0.85, or if either of the two
spare units had activation greater than 0.5, or if more than one speech part unit had
activation greater than 0.5. To prevent the possibility of infinite descent, a maximum
depth of 3 was imposed on the decoded trees.  (This is one greater than the maximum
depth of trees actually used in the experiment.)

 
If a representation was deemed terminal, then a simple procedure was used to find

the associated word.  If no speech part unit had activation greater than 0.5, then the word
was deemed the “dummy” word; else the speech part was determined by the unit with
maximum activation.  The associated specific word was obtained by taking the “word” unit
with maximum activation.

 
As an initial test, the 80 sentences in the training corpus were recursively encoded,

and then decoded using the above method.  Unsurprisingly, all 80 were decoded back to
the correct original sentence.

 
As a test of generalization, the 80 new sentences from the testing corpus were

encoded and decoded in the same fashion.  All but 13 of these sentences decoded back to
the original sentence.  Of the 13 mistakes, only one was decoded to an incorrect sentence
structure; the other 12 all had one incorrect word within a correct sentence structure.

 
A generalization rate of over 80% seems to be remarkably good.  This appears to

indicate that the RAAM network is very appropriate for encoding complex sentence
structures, although of course more work is needed to investigate the results of encoding
many different sentence types.  Detailed analysis of how the sentences are internally repre-
sented has not yet been undertaken.
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4  The Transformation Network
 
So far, what has been described amounts merely to a connectionist implementation of

Classical symbol structures.  To get beyond an implementation, we must use operations
other than just composition and extraction.

 
Here, we will model the process of syntactic transformation, by operating directly on

the compressed distributed representations of sentences, and without passing through any
stages of composition or extraction.  This kind of operation is not present in Classical
models.

 
The transformation we choose to model here is that of passivization, though many

others could also be modeled.  To do this, we take a sentence of a similar form to “John
loves Michael,” and the corresponding passivized sentence of the form “Michael is loved
by John.”  Using the RAAM as trained above, we encode these using the tree structure of
Figure 2, yielding a distributed representation for each sentence.  We wish to train a
network to transform directly from one distributed representation to the other.

 
The network that we will use is another simple 3-layer feedforward network (of

course, it is not recursive this time), as shown in Figure 3.  The input and output layers
both consist of 13 units, the size of the compressed representations developed by the
RAAM.  The number of units in the hidden layer varied in these experiments from 13 to
29.

               
 

Figure 3.  The Transformation network.

4.1 Training the Transformation Network
 
The same training corpus was used: 40 sentences of “active” form and the 40

corresponding passive sentences.  This time, however, these were arranged as 40

6

Input: Distributed rep of active sentence

Output: Distributed rep of passive sentence



input/output pairs.  On every training cycle, input to the Transformation network was the
encoded RAAM representation of an active sentence; the desired output of the network
was the encoded RAAM representation of the corresponding passivized sentence.

 
In the main set of experiments, 13 units were used in the hidden layer.  The learning

rate was 0.1, and the momentum rate 0.9.  The network was trained for 1500 epochs,
consisting of 40 cycles each.  At the end of this time, only one output unit (out of 1560 per
epoch) had an error greater than 0.05.  The maximum error was 0.067.

 

4.2  Testing the Transformation Network
 
As an initial test, the 40 “active” sentences from the training corpus were encoded

using RAAM, and fed to the Transformation network, yielding a new distributed
representation.  These representations were decoded using RAAM (with the usual tests).
All 40 of these decoded to the correct passive sentence.

 
As a test of generalization, 40 new input/output pairs of sentences were used (the

same 40 as in the testing corpus from Part 3).  Again, RAAM-encoded distributed
representations of the “active” sentences were fed to the Transformation Network, yielding
new distributed representations, which could be decoded to sentences.  Out of these 40,
26 decoded to the correct passivized sentence; of the remaining 14, one had incorrect
sentence structure, and the other 13 had a single incorrect word.

 
This 65% generalization rate was better than expected.  It indicates that the network

has developed a high degree of sensitivity to the structure encoded implicitly in the
distributed representations.

 

4.3  Variations
 
The performance of the Transformation network may be even better than the 65%

generalization rate indicates.  This is because a large number of the errors may be due to
decoding mistakes by the RAAM network, rather than mistakes in transforming the
distributed representations.  This phenomenon arises because we are testing the
Transformation networks on sentences that were not in the training corpus for the RAAM
network.

 
To test this hypothesis, the Transformation network was retrained, this time with a

training corpus consisting of 20 active/passive pairs from the original training corpus of
the RAAM network, and 20 active/passive pairs from the original testing corpus.  This
training proceeded as in Part 4.1.

 
The results of this training were then tested on the 20 other active/passive pairs from

the original RAAM training corpus, which were not in the training corpus for the
Transformation network.  Generalization on these 20 sentences was perfect — all 20
transformed distributed representations decoded to the correct passive form of the
sentences.
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When the 20 active/passive pairs that were in the Transformation training corpus
but not in the RAAM training corpus were tested, 12 out of 20 decoded correctly.  Exactly
the same results were achieved for the final 20 active/passive pairs, which were in the
training corpus for neither network.

 
This seems to confirm the hypothesis that most of the original generalization errors

were due to incorrect generalization by the RAAM decoding process, rather than by the
Transformation process.  The generalization ability of the Transformation network itself
appears to be remarkably good.

To eliminate the possibility of RAAM generalization error, a new experiment was
run, retraining the RAAM network on all 250 possible sentences (125 active and 125
passive).  The Transformation network was then trained on a randomly selected set of 75
of the 125 possible active/passive pairs.  Generalization was tested on the other 50
active/passive pairs.  All 50 of the transformed distributed representations decoded to the
correct passivized sentence, giving a generalization rate of 100%.

Finally, the reverse transformation, from passive to active, was modeled in a similar
way.  (This was partially to see whether a network could be sensitive to the more intricate
structure present in the composition of the passive sentences.)  A new Transformation net-
work was trained on the same 75 active/passive pairs, this time taking the representations
of the passive sentences as input and being trained to produce representations of the ac-
tive sentences as output.  When tested on the other 50 active/passive pairs, the generaliza-
tion rate was again 100%.

5   Relationship with existing work

Precursors to this work include the connectionist implementations of production sys-
tems, including those of Touretzky and Hinton (1988) and of Dolan and Smolensky
(1989).  Like the current model, these operate on complex structured items (usually trip-
lets of the form (A,B,C)), associating them with new structures, whilst operating at the
level of the distributed representation (constituents of the original structures are never ex-
plicitly extracted).  Unlike the model under discussion, however, these make no attempt at
modeling systematicity.  These models associate certain specific triplets with other specific
triplets — (A,B,C) might be associated with (N,P,G) — in a way that is not systematically
dependent on the structure present in the triplets.  Apart from the use of a limited notion
of variable binding, no attempt is made at modeling truly structure-sensitive operations, or
at capturing any kind of generalization.

Also worth mentioning is an earlier connectionist model of syntactic transformations
by Touretzky (1986).  This used an architecture based upon the Boltzmann machine to
transform parse trees of active sentences into those of the corresponding passive sentenc-
es.  It operated by first extracting the atomic constituents of the original tree (using imple-
mentations of the “car” and “cdr” operators) and then recombining them into the new
tree.  Unlike the model described in this paper, therefore, this was a direct implementa-
tion of a Classical algorithm. 
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6  Discussion

The above experiments have established that the distributed representations formed
by RAAM are well-suited for structure-sensitive operations.  Not only is compositional
structure encoded implicitly in a pattern of activation, but this implicit structure can be
utilized by the familiar connectionist devices of feed-forward/backpropagation in a
meaningful way.  Such a conclusion is by no means obvious a priori — it might well have
turned out that the the structure was “buried too deeply” to be directly used, and that all
useful processing would have to proceed first through the step of extraction.  That this
turns out not to be the case bodes well for the connectionist exploration of natural lan-
guage processes.  It suggests that connectionism might be able to offer some ideas that are
in an important sense, new.

These results about the processing of implicit structure form a direct counterexam-
ple to a recent argument by Fodor and McLaughlin (1990).  Arguing against connection-
ist compositional representations, Fodor and McLaughlin claim that to support structure-
sensitive processing, representations of compositional structure must contain explicit to-
kens of the original constituent parts.  If a representation of “John loves Michael” is not a
concatenation of tokens of “John”, “loves”, and “Michael”, it is argued, then later process-
ing cannot be sensitive to the compositional structure that is represented.  The results pre-
sented here show that this conclusion is false.  In the distributed representations formed
by RAAM, there is no such explicit tokening of the original words.  (A detailed analysis of
the representations is yet to be performed, and would be a valuable next step.  But even
on a cursory analysis, it is plain that the RAAM representations do not have the kind of
concatenative structure that Fodor and McLaughlin require.)  Nevertheless, the represen-
tations support systematic processing.  Explicit constituent structure is not needed for syste-
maticity; implicit structure is enough.

These experiments fall squarely under the rubric of limitivist symbol-processing.  This
connectionist system is certainly not doing away with the idea of symbols altogether, and
there are approximate law-like regularities to its performance.  But it is impossible to
describe the operation of this system, at any level of functional abstraction, as an
implementation of a pure symbolic process. The compositional representations used here
are not operated on reductionistically, by splitting into their constituent parts and then pro-
cessing.  Rather, the operations are direct and holistic.

The experiments outlined above demonstrate the possibility of such holistic struc-
ture-sensitive operations, but they by no means exploit the full potential of these.  After
all, syntactic transformations are handled very easily by pure symbolic systems.  The real
potential of holistic operations arises because of a special property of connectionist
representations: they can carry their own content, or at least part of it.  In Hinton’s (1988)
terms, such representations are reduced descriptions of the original objects, that go beyond
the atomic, content-free representations that are the foundation of symbolic models.  The
information carried in patterns of activation can be used not only for composition and ex-
traction, but also for semantically meaningful operations.  It would be very interesting to
see connectionist processes that are structure-sensitive while simultaneously utilizing the
kind of content-dependent pattern association for which connectionist networks are
renowned.  This is the promise that is laid open by implicitly-structured connectionist
representations, and it is a promise that could lead to radically new ideas about natural
language processing.
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